Advanced Statistical Physics - Problem set 14 - Bonus

Summer Terms 2022

Hand in: Hand in tasks marked with * to mailbox no. (43) inside ITP room 105b by Friday 15.07. at 9:15 am.

22. Long-range interactions *

$2+2+2+2+3+3$ Points
Consider the Landau-Ginzburg Hamiltonian

$$
\beta \mathcal{H}=\int d^{d} x\left[\frac{t}{2} \vec{m}^{2}+\frac{K_{2}}{2}(\nabla \vec{m})^{2}+u \vec{m}^{4}\right]
$$

The long-range interactions between the spins can be described by adding a term

$$
\int d^{d} x \int d^{d} y J(|\mathbf{x}-\mathbf{y}|) \vec{m}(\mathbf{x}) \cdot \vec{m}(\mathbf{y})
$$

to the Landau-Ginzburg Hamiltonian.
(a) Show that for $J(r) \propto 1 / r^{d+\sigma}$, the Hamiltonian can be written as
$\beta \mathcal{H}=\int \frac{d^{d} q}{(2 \pi)^{d}} \frac{t+K_{2} q^{2}+K_{\sigma} q^{\sigma}}{2}|\vec{m}(\mathbf{q})|^{2}+u \int \frac{d^{d} q_{1} d^{d} q_{2} d^{d} q_{3}}{(2 \pi)^{3 d}} \vec{m}\left(\mathbf{q}_{1}\right) \cdot \vec{m}\left(\mathbf{q}_{2}\right) \vec{m}\left(\mathbf{q}_{3}\right) \cdot \vec{m}\left(-\mathbf{q}_{1}-\mathbf{q}_{2}-\mathbf{q}_{3}\right)$.
(b) For $u=0$, construct the recursion relations for $\left(t, K_{2}, K_{\sigma}\right)$. Find the fixed point corresponding to $K_{2}^{\prime}=K_{2}$ and the anomalous dimensions y_{t} and $y_{K_{\sigma}}$. Similarly, find the fixed point corresponding to $K_{\sigma}^{\prime}=K_{\sigma}$ and the corresponding anomalous dimensions y_{t} and $y_{K_{2}}$.
(c) Which of the fixed points controls the critical behavior of the system for $\sigma>2$? How about in the case $\sigma<2$? Which terms in the Hamiltonian are irrelevant?
(d) For $\sigma<2$, calculate the generalized Gaussian exponents ν, η and γ from the recursion relations. Show that u is irrelevant, and hence the Gaussian results are valid, for $d>2 \sigma$.
(e) For $\sigma<2$, consider $u \int d^{d} x \vec{m}^{4}$ as a perturbation, and use the perturbative RG (first order) to construct the recursion relations for $\left(t, K_{\sigma}, u\right)$. Note that the calculation is analogous to the one discussed in the lectures.
(f) For $\sigma<2$, it turns out that the recursion relations for t and u in the second order perturbative RG are modified to

$$
\begin{aligned}
\frac{d t}{d l} & =\sigma t+4 u \frac{(n+2) K_{d} \Lambda^{d}}{t+K_{\sigma} \Lambda^{\sigma}}-u^{2} C_{t} \\
\frac{d u}{d l} & =\epsilon u-4 u^{2} \frac{(n+8) K_{d} \Lambda^{d}}{\left(t+K_{\sigma} \Lambda^{\sigma}\right)^{2}}
\end{aligned}
$$

where $\epsilon=2 \sigma-d$. (In principle C_{t} could be determined by evaluating the diagrams appearing in the second-order RG calculation, but it is not necessary to know an expression for C_{t}.). Find the fixed points of the recursion relations. For $d<2 \sigma$, linearize the recursion relations in the vicinity of the non-trivial fixed point to find the critical exponents ν and η to first order in ϵ.
(g) What is the critical behavior if $J(r) \propto \exp (-r / a)$?

